Live Demos
demos.RmdOverview
dashboardr includes several live demo dashboards that
showcase its capabilities. Each demo comes with complete code
documentation showing the exact R code used.
Main Demos
- Tutorial Dashboard - Beginner-friendly introduction to dashboardr. Code & Docs | Live Demo
- Showcase Dashboard - Advanced dashboard with multiple pages and tabsets. Code & Docs | Live Demo
- Interactive Inputs - Gallery of input types (select, slider, switch, checkbox). View Demo
- Sidebar Demo - Page sidebars with filters (checkbox, dropdown, slider). View Demo
Tabset Theme Demos
Each tabset theme has its own demo dashboard showing 1, 2, and 3-level nested tabs:
Loading Overlays
Demo of animated loading overlays with different themes (light, dark, glass, accent). View Demo
Tutorial Dashboard
The tutorial dashboard is perfect for learning the basics:
- Stacked bar charts with custom colors and ordering
- Heatmaps showing relationships between variables
- Tabset grouping for organizing visualizations
- Text-only pages for documentation
- Collapsible code blocks showing exact R code for each visualization
View Complete Code Documentation β
library(dashboardr)
# Generate and open the tutorial dashboard
tutorial_dashboard()Showcase Dashboard
The showcase dashboard demonstrates advanced features:
- Multiple tabset groups (Demographics, Politics, Social Issues)
- Complex visualizations with custom styling
- Mixed content pages (text + visualizations)
- Card layouts with images
- Bidirectional links between code documentation and live visualizations
View Complete Code Documentation β
# Generate and open the showcase dashboard
showcase_dashboard()Setting a Tabset Theme
# Set theme at dashboard level
create_dashboard(
title = "My Dashboard",
output_dir = "my_dashboard",
tabset_theme = "pills"
)Available themes: pills, modern,
minimal, classic, underline,
segmented.
Creating Nested Tabs
# 1 Level - Different tabgroup names create separate tabs
create_viz() %>%
add_viz(type = "bar", x_var = "age", tabgroup = "age") %>%
add_viz(type = "bar", x_var = "education", tabgroup = "education") %>%
add_viz(type = "bar", x_var = "region", tabgroup = "region")
# 2 Levels - Use "/" to create parent > child hierarchy
create_viz() %>%
add_viz(type = "bar", x_var = "age", tabgroup = "satisfaction/by_age") %>%
add_viz(type = "bar", x_var = "education", tabgroup = "satisfaction/by_education")
# 3 Levels - Add more "/" for deeper nesting
create_viz() %>%
add_viz(type = "bar", x_var = "age", tabgroup = "survey/satisfaction/age") %>%
add_viz(type = "bar", x_var = "education", tabgroup = "survey/demographics/education")Page Sidebars
Sidebars provide a dedicated space for filters that stays visible as users scroll:
create_content(data = my_data) %>%
add_sidebar(width = "280px", title = "Filters") %>%
add_text("Filter the data:") %>%
add_input(
input_id = "country",
label = "Countries:",
type = "checkbox",
filter_var = "country",
options = c("USA", "UK", "Germany"),
columns = 2 # 2-column grid layout
) %>%
end_sidebar() %>%
add_viz(type = "bar", x_var = "country")Features:
- Left or right positioning (
position = "right") - Multiple input types (checkbox, radio, dropdown, slider)
- Multi-column layouts for checkboxes
(
columns = 2, 3, 4) - Mobile-responsive (stacks on small screens)
See the Sidebar Demo for live examples.
Loading Overlays
# Add overlay to a page
add_page(
name = "Analysis",
data = my_data,
visualizations = my_viz,
overlay = TRUE,
overlay_theme = "glass",
overlay_text = "Loading charts...",
overlay_duration = 2000
)Available overlay themes: light, dark,
glass, accent.
Requirements
All demos require:
- Quarto CLI installed on your system
- gssr package for GSS data (for tutorial/showcase):
install.packages("gssr")Next Steps
After exploring the demos:
- Run
tutorial_dashboard()to see basic features - Run
showcase_dashboard()to see advanced capabilities - Check out
vignette("getting-started")for detailed guides - Use the demos as templates for your own projects