Advanced Features
advanced-features.RmdThis vignette covers advanced dashboardr features: interactive inputs, data filtering, batch creation, survey weights, icons, and navigation customization.
π Data Setup (click to expand)
library(dashboardr)
library(dplyr)
library(gssr)
library(haven)
# Load GSS data
data(gss_all)
# Latest wave only (for most examples)
gss <- gss_all %>%
select(year, age, sex, race, degree, happy, polviews, wtssps) %>%
filter(year == max(year, na.rm = TRUE)) %>%
filter(
happy %in% 1:3,
polviews %in% 1:7,
!is.na(age), !is.na(sex), !is.na(race), !is.na(degree)
) %>%
mutate(
age = as.numeric(age), # Keep age as numeric for filter comparisons
happy = droplevels(as_factor(happy)),
polviews = droplevels(as_factor(polviews)),
degree = droplevels(as_factor(degree)),
sex = droplevels(as_factor(sex)),
race = droplevels(as_factor(race))
)π Filtering Data
Filters let you create multiple visualizations from the same dataset,
each showing a different subset. Instead of manually splitting your data
into separate data frames, you define the filter condition directly in
add_viz().
Why Use Filters?
Without filters, youβd need to create separate datasets:
# Tedious approach - don't do this
males <- gss %>% filter(sex == 1)
females <- gss %>% filter(sex == 2)
create_content(data = males, type = "bar") %>%
add_viz(x_var = "happy", title = "Male")
create_content(data = females, type = "bar") %>%
add_viz(x_var = "happy", title = "Female")With filters, one dataset serves all visualizations:
# Clean approach - do this!
create_content(data = gss, type = "bar") %>%
add_viz(x_var = "happy", title = "Male", filter = ~ sex == "male") %>%
add_viz(x_var = "happy", title = "Female", filter = ~ sex == "female")Filter Syntax
Filters use Rβs formula syntax with a tilde (~). The
expression after ~ is evaluated against your data:
| Filter | Meaning |
|---|---|
~ sex == 1 |
Rows where sex equals 1 |
~ age > 30 |
Rows where age is greater than 30 |
~ race == "white" |
Rows where race is βwhiteβ |
~ age >= 18 & age <= 35 |
Rows where age is between 18 and 35 |
~ degree %in% c("bachelor", "graduate") |
Rows where degree is bachelor or graduate |
Basic Example: Comparing Groups
Show the same variable for different subgroups side by side:
filtered <- create_content(data = gss, type = "bar") %>%
add_viz(x_var = "happy", title = "Male", filter = ~ sex == "male", tabgroup = "Male") %>%
add_viz(x_var = "happy", title = "Female", filter = ~ sex == "female", tabgroup = "Female")
print(filtered)
#> -- Content Collection ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> 2 items | β data: 2997 rows x 8 cols
#>
#> β― [Tab] Male (1 viz)
#> β’ [Viz] Male (bar) x=happy +filter
#> β― [Tab] Female (1 viz)
#> β’ [Viz] Female (bar) x=happy +filterThis creates two charts in the same tabgroup - one filtered to males, one to females. Users can switch between them to compare happiness distributions.
Complex Filters: Multiple Conditions
Combine conditions with & (and) and |
(or). Here we create one tabgroup (βage_groupsβ) with three tabs, each
showing happiness for a different age range:
complex <- create_content(data = gss, type = "bar") %>%
add_viz(x_var = "happy", title = "Young Adults (18-35)",
filter = ~ age >= 18 & age <= 35, tabgroup = "Youngsters") %>%
add_viz(x_var = "happy", title = "Middle Age (36-55)",
filter = ~ age > 35 & age <= 55, tabgroup = "Middlers") %>%
add_viz(x_var = "happy", title = "Older Adults (55+)",
filter = ~ age > 55, tabgroup = "Olders")
print(complex)
#> -- Content Collection ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> 3 items | β data: 2997 rows x 8 cols
#>
#> β― [Tab] Youngsters (1 viz)
#> β’ [Viz] Young Adults (18-35) (bar) x=happy +filter
#> β― [Tab] Middlers (1 viz)
#> β’ [Viz] Middle Age (36-55) (bar) x=happy +filter
#> β― [Tab] Olders (1 viz)
#> β’ [Viz] Older Adults (55+) (bar) x=happy +filterFilters vs.Β group_var
When to use filter: - You want
completely separate charts for each group - Groups need different
titles, settings, or tabgroups - Youβre comparing the same variable
across subsets
When to use group_var: - You want
grouped bars within a single chart - Direct visual comparison in one
view
# Using filter: separate charts per group
create_content(data = gss, type = "bar") %>%
add_viz(x_var = "happy", title = "Happiness (Male)", filter = ~ sex == "male", tabgroup = "separate") %>%
add_viz(x_var = "happy", title = "Happiness (Female)", filter = ~ sex == "female", tabgroup = "separate") %>%
preview()
# Using group_var: one chart with grouped bars
create_content(data = gss, type = "bar") %>%
add_viz(x_var = "happy", group_var = "sex", title = "Happiness by Sex") %>%
preview()Filter + title_tabset: Organized Comparisons
When youβre comparing the same variable across multiple
groups, title_tabset creates a second level of
tabs:
-
tabgroup= the category (e.g., βHappinessβ, βEducationβ) -
title_tabset= the variant within that category (e.g., βMaleβ, βFemaleβ)
gender_comparison <- create_content(data = gss, type = "bar") %>%
# Happiness tabgroup with Male/Female sub-tabs
add_viz(x_var = "happy", title = "Happiness",
filter = ~ sex == "male", title_tabset = "Male", tabgroup = "happiness") %>%
add_viz(x_var = "happy", title = "Happiness",
filter = ~ sex == "female", title_tabset = "Female", tabgroup = "happiness") %>%
# Education tabgroup with Male/Female sub-tabs
add_viz(x_var = "degree", title = "Education",
filter = ~ sex == "male", title_tabset = "Male", tabgroup = "education") %>%
add_viz(x_var = "degree", title = "Education",
filter = ~ sex == "female", title_tabset = "Female", tabgroup = "education")
print(gender_comparison)
#> -- Content Collection ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> 4 items | β data: 2997 rows x 8 cols
#>
#> β― [Tab] happiness (2 vizs)
#> β’ [Viz] Happiness (bar) x=happy +filter
#> β’ [Viz] Happiness (bar) x=happy +filter
#> β― [Tab] education (2 vizs)
#> β’ [Viz] Education (bar) x=degree +filter
#> β’ [Viz] Education (bar) x=degree +filterπ Batch Creation with add_vizzes()
When you need to create many similar visualizations,
add_vizzes() lets you do it in one call instead of
repeating add_viz() multiple times.
The Problem: Repetitive Code
# Tedious and error-prone
create_content(data = gss, type = "bar") %>%
add_viz(x_var = "degree", title = "Education", tabgroup = "survey") %>%
add_viz(x_var = "race", title = "Race", tabgroup = "survey") %>%
add_viz(x_var = "happy", title = "Happiness", tabgroup = "survey") %>%
add_viz(x_var = "polviews", title = "Politics", tabgroup = "survey")The Solution: Vector Parameters
With add_vizzes(), pass vectors for the parameters that
vary, and single values for parameters that stay the same:
vars <- c("degree", "race", "happy", "polviews")
labels <- c("Education", "Race", "Happiness", "Politics")
batch <- create_content(data = gss, type = "bar") %>%
add_vizzes(x_var = vars, title = labels, tabgroup = "survey")
print(batch)
#> -- Content Collection ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> 4 items | β data: 2997 rows x 8 cols
#>
#> β― [Tab] survey (4 vizs)
#> β’ [Viz] Education (bar) x=degree
#> β’ [Viz] Race (bar) x=race
#> β’ [Viz] Happiness (bar) x=happy
#> β’ [Viz] Politics (bar) x=polviewsHow It Works
Vector parameters (vary per visualization): -
x_var, y_var, stack_var,
group_var, title, questions -
Must all have the same length
Scalar parameters (shared across all): -
type, color_palette, bar_type,
horizontal, tabgroup (if single value), etc. -
Applied to every visualization
Different Tabgroups Per Viz
Pass tabgroup as a vector to put each visualization in a
different tab:
create_content(data = gss, type = "bar") %>%
add_vizzes(
x_var = c("degree", "happy", "polviews"),
title = c("Education", "Happiness", "Politics"),
tabgroup = c("demographics", "wellbeing", "attitudes")
) %>%
preview()ποΈ Interactive Inputs
Interactive input widgets transform your dashboard from a static report into an exploratory data tool. Users can filter data, adjust parameters, and see visualizations update in real-time.
π See it in action: Check out the Inputs Demo to try all input types with real GSS data!
How Inputs Work
The input system connects user controls to data columns:
User selects "Bachelor's" in dropdown
β
filter_var = "degree" tells dashboardr which column to filter
β
Data is filtered to rows where degree == "Bachelor's"
β
All visualizations on the page update automatically
Basic pattern:
create_page("Analysis", data = my_data, type = "bar") %>%
add_input_row() %>%
add_input(input_id = "edu", label = "Education",
filter_var = "degree", options_from = "degree") %>%
end_input_row() %>%
add_viz(x_var = "happy", title = "Happiness") # Automatically filtered!Note: Inputs show as placeholders in
preview(). They become fully interactive when you rungenerate_dashboard(render = TRUE)and view in a browser.
Input Types
| Type | Best For | Selection |
|---|---|---|
select_multiple |
Many categories (10+) | Multiple |
select_single |
Many categories, pick one | Single |
checkbox |
Few categories (3-6) | Multiple |
radio |
Mutually exclusive choices | Single |
slider |
Numeric ranges or ordered categories | Single value |
switch |
Toggle a series on/off | Boolean |
Select Dropdowns
# Single selection
add_input(
input_id = "metric",
label = "Select Metric",
type = "select_single",
filter_var = "metric",
options = c("Sales", "Revenue", "Profit"),
default_selected = "Sales"
)
# Multiple selection
add_input(
input_id = "countries",
label = "Select Countries",
type = "select_multiple",
filter_var = "country",
options_from = "country", # Get options from data column
placeholder = "Choose countries..."
)Grouped Options
For long lists, organize options into groups:
# Create grouped options (named list)
countries_by_region <- list(
"Europe" = c("Germany", "France", "UK", "Spain"),
"Asia" = c("China", "Japan", "India", "Korea"),
"Americas" = c("USA", "Canada", "Brazil", "Mexico")
)
add_input(
input_id = "country",
label = "Select Country",
type = "select_multiple",
filter_var = "country",
options = countries_by_region, # Grouped!
default_selected = c("USA", "Germany")
)Checkbox & Radio Buttons
# Checkboxes - multiple selection, all visible
add_input(
input_id = "race",
label = "Race",
type = "checkbox",
filter_var = "race",
options_from = "race",
inline = TRUE # Horizontal layout
)
# Radio buttons - single selection
add_input(
input_id = "sex",
label = "Gender",
type = "radio",
filter_var = "sex",
options_from = "sex",
inline = TRUE
)Sliders
Sliders work for numeric data or ordered categories:
# Numeric slider
add_input(
input_id = "year",
label = "Year",
type = "slider",
filter_var = "year",
min = 2010,
max = 2024,
step = 1,
value = 2020,
show_value = TRUE
)
# Slider with custom labels (for ordered categories)
add_input(
input_id = "decade",
label = "Starting Decade",
type = "slider",
filter_var = "decade",
min = 1,
max = 6,
step = 1,
value = 1,
labels = c("1970s", "1980s", "1990s", "2000s", "2010s", "2020s")
)Switch (Toggle Series)
Switches toggle a specific data series on/off. Unlike other inputs
that filter data, a switch with toggle_series controls
visibility of a named series in your chart:
add_input(
input_id = "show_avg",
label = "Show Global Average",
type = "switch",
filter_var = "country",
toggle_series = "Global Average", # Must match a value in your data
value = TRUE, # Start with it shown
override = TRUE
)Input Layout
Use add_input_row() to organize inputs horizontally:
create_page("Analysis", data = gss, type = "bar") %>%
# First row: main filters
add_input_row(style = "inline", align = "center") %>%
add_input(input_id = "edu", label = "Education",
filter_var = "degree", options_from = "degree",
width = "300px") %>%
add_input(input_id = "race", label = "Race",
type = "checkbox", filter_var = "race",
options_from = "race", inline = TRUE) %>%
end_input_row() %>%
# Second row: additional controls
add_input_row() %>%
add_input(input_id = "sex", label = "Gender",
type = "radio", filter_var = "sex",
options_from = "sex", inline = TRUE) %>%
end_input_row() %>%
add_viz(x_var = "happy", title = "Happiness Distribution")Input Parameters Reference
| Parameter | Description | Used With |
|---|---|---|
input_id |
Unique identifier | All |
label |
Display label | All |
type |
Input type | All |
filter_var |
Column to filter | All |
options |
Manual list of options | select, checkbox, radio |
options_from |
Column to get options from | select, checkbox, radio |
default_selected |
Pre-selected values | select, checkbox, radio |
min, max, step
|
Range settings | slider |
value |
Default value | slider, switch |
labels |
Custom labels for slider positions | slider |
toggle_series |
Series name to show/hide | switch |
override |
Override other filters | switch |
inline |
Horizontal layout | checkbox, radio |
width |
Input width (CSS) | select |
placeholder |
Placeholder text | select |
help |
Help text below input | All |
Complete Example
Hereβs a full working example with multiple input types:
library(dashboardr)
library(dplyr)
library(gssr)
library(haven)
# Prepare data
data(gss_all)
gss_inputs <- gss_all %>%
select(year, age, sex, race, degree, happy, polviews) %>%
filter(year >= 2010, happy %in% 1:3,
!is.na(age), !is.na(sex), !is.na(race), !is.na(degree)) %>%
mutate(across(c(happy, degree, sex, race), ~droplevels(as_factor(.))))
# Create page with inputs
inputs_page <- create_page("Explorer", data = gss_inputs, type = "bar") %>%
add_text(
"## GSS Data Explorer",
"",
"Filter the data using the controls below. All charts update automatically."
) %>%
add_input_row() %>%
add_input(
input_id = "edu",
label = "Education Level",
type = "select_multiple",
filter_var = "degree",
options_from = "degree",
width = "250px"
) %>%
add_input(
input_id = "race",
label = "Race",
type = "checkbox",
filter_var = "race",
options_from = "race",
inline = TRUE
) %>%
end_input_row() %>%
add_input_row() %>%
add_input(
input_id = "sex",
label = "Gender",
type = "radio",
filter_var = "sex",
options_from = "sex",
inline = TRUE
) %>%
end_input_row() %>%
add_viz(x_var = "happy", title = "Happiness", tabgroup = "Results") %>%
add_viz(x_var = "polviews", title = "Political Views", tabgroup = "Results")
# Generate
create_dashboard(title = "GSS Explorer", output_dir = "gss_explorer") %>%
add_pages(inputs_page) %>%
generate_dashboard(render = TRUE, open = "browser")π Page Sidebars
Sidebars provide a dedicated space for inputs and controls alongside your visualizations. Instead of placing filters above your charts, a sidebar keeps them visible and accessible as users scroll through content.
Why Use Sidebars?
- Persistent controls: Filters remain visible while scrolling through charts
- Better space usage: Inputs donβt take up vertical space in the main content area
- Professional look: Common pattern in data dashboards and analytics tools
- Mobile-friendly: Automatically adapts to smaller screens
Basic Sidebar
Use add_sidebar() and end_sidebar() to wrap
sidebar content:
page <- create_page("Analysis", data = gss) %>%
create_content(data = gss) %>%
add_sidebar(width = "280px", title = "Filters") %>%
add_text("Filter the data below.") %>%
add_divider() %>%
add_input(
input_id = "edu_filter",
label = "Education:",
type = "checkbox",
filter_var = "degree",
options_from = "degree",
columns = 2 # Display in 2-column grid
) %>%
end_sidebar() %>%
add_viz(type = "bar", x_var = "happy", title = "Happiness Distribution")Sidebar Position
By default, sidebars appear on the left. Use
position = "right" for a right-side sidebar:
create_content(data = gss) %>%
add_sidebar(width = "300px", title = "Options", position = "right") %>%
add_input(...) %>%
end_sidebar() %>%
add_viz(...)Sidebar Content
Sidebars can contain any content, not just inputs:
add_sidebar(width = "280px", title = "About") %>%
add_text("Select options to explore the data.") %>%
add_divider() %>%
add_input(...) %>%
add_spacer(height = "1rem") %>%
add_callout("Data source: GSS 2022", type = "note") %>%
add_badge("Updated Weekly", color = "primary") %>%
end_sidebar()Multi-Column Inputs
For checkboxes and radio buttons, use the columns
parameter to display options in a grid layout instead of a vertical
list:
# 2-column grid (great for sidebars)
add_input(
input_id = "countries",
label = "Countries:",
type = "checkbox",
filter_var = "country",
options = c("USA", "UK", "Germany", "France", "Italy"),
columns = 2
)
# 3-column grid (for wider sidebars)
add_input(..., columns = 3)
# Inline (horizontal wrap)
add_input(..., inline = TRUE)Different Sidebars Per Page
Each page can have its own sidebar with different inputs:
# Page 1: Left sidebar with checkboxes
page1 <- create_page("Demographics", data = gss) %>%
create_content(data = gss) %>%
add_sidebar(width = "280px", title = "Filter") %>%
add_input(type = "checkbox", ...) %>%
end_sidebar() %>%
add_viz(...)
# Page 2: Right sidebar with dropdown
page2 <- create_page("Trends", data = gss) %>%
create_content(data = gss) %>%
add_sidebar(width = "300px", position = "right", title = "Options") %>%
add_input(type = "select_multiple", ...) %>%
end_sidebar() %>%
add_viz(...)
# Page 3: No sidebar
page3 <- create_page("About") %>%
add_text("About this dashboard...")Complete Example
library(dashboardr)
# Create page with sidebar
page <- create_page("Explorer", data = gss) %>%
create_content(data = gss, type = "bar") %>%
add_sidebar(width = "280px", title = "Data Filters") %>%
add_text("Select groups to include in the analysis.") %>%
add_divider() %>%
add_input(
input_id = "degree_filter",
label = "Education Level:",
type = "checkbox",
filter_var = "degree",
options_from = "degree",
columns = 2
) %>%
add_spacer(height = "0.5rem") %>%
add_input(
input_id = "sex_filter",
label = "Gender:",
type = "radio",
filter_var = "sex",
options_from = "sex"
) %>%
add_divider() %>%
add_callout("Charts update automatically when you change filters.", type = "tip") %>%
end_sidebar() %>%
add_viz(x_var = "happy", title = "Happiness", tabgroup = "Results") %>%
add_viz(x_var = "polviews", title = "Political Views", tabgroup = "Results")
# Generate dashboard
create_dashboard(title = "GSS Explorer", output_dir = "gss_sidebar") %>%
add_page(page) %>%
generate_dashboard(render = TRUE)βοΈ Survey Weights
Survey data often requires weighting to produce population-representative estimates. Without weights, your sample might over- or under-represent certain groups.
Why Use Weights?
Unweighted data shows your raw sample distribution - useful for understanding who responded, but may not reflect the actual population.
Weighted data adjusts for sampling design and non-response, giving you estimates that better represent the target population.
Applying Weights
Set weight_var in create_content() to apply
weights to all visualizations. The GSS provides several weight
variables; wtssps is the recommended post-stratification
weight for recent years:
# Compare unweighted vs weighted
unweighted <- create_content(data = gss, type = "bar") %>%
add_viz(x_var = "degree", title = "Education (Unweighted)", tabgroup = "comparison")
weighted <- create_content(data = gss, type = "bar", weight_var = "wtssps") %>%
add_viz(x_var = "degree", title = "Education (Weighted)", tabgroup = "comparison")
# Combine to see the difference
(unweighted + weighted) %>% preview()Notice how the distributions differ - the weighted version adjusts for the fact that more educated people are typically overrepresented in survey samples.
Weight as a Default
When you set weight_var in
create_content(), it applies to all
visualizations in that collection:
# All three charts use the same weight
weighted_collection <- create_content(data = gss, type = "bar", weight_var = "wtssps") %>%
add_viz(x_var = "degree", title = "Education", tabgroup = "weighted") %>%
add_viz(x_var = "race", title = "Race", tabgroup = "weighted") %>%
add_viz(x_var = "happy", title = "Happiness", tabgroup = "weighted")
print(weighted_collection)
#> -- Content Collection ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> 3 items | β data: 2997 rows x 8 cols
#>
#> β― [Tab] weighted (3 vizs)
#> β’ [Viz] Education (bar) x=degree
#> β’ [Viz] Race (bar) x=race
#> β’ [Viz] Happiness (bar) x=happyπ― Customizing Tooltips
dashboardr provides a flexible 3-tier system for customizing chart tooltips, from quick tweaks to full control.
Quick Customization (Tier 1)
Add prefix or suffix text to tooltip values:
viz_bar(data = gss, x_var = "degree",
tooltip_prefix = "Count: ",
tooltip_suffix = " respondents")Format Strings (Tier 2)
Use format strings with {placeholders} for more
control:
viz_bar(data = gss, x_var = "degree",
tooltip = "{category}: {value} people ({percent})")Available placeholders vary by chart type:
| Placeholder | Description | Charts |
|---|---|---|
{value} |
Primary value | All |
{category} |
X-axis category | bar, histogram, stackedbar |
{x}, {y}
|
Coordinates | scatter, heatmap |
{series} |
Series name | Grouped charts |
{percent} |
Percentage | Percent-type charts |
| name | Point name | All |
Full Control (Tier 3)
Use the tooltip() helper for complete customization
including styling:
viz_bar(data = gss, x_var = "degree",
tooltip = tooltip(
format = "<b>{category}</b><br/>Count: {value}",
backgroundColor = "#f8f9fa",
borderColor = "#dee2e6",
borderRadius = 8,
style = list(fontSize = "14px")
))The tooltip() function exposes all Highcharts tooltip
options:
-
format- Format string with {placeholders} -
shared- Share tooltip across series (TRUE/FALSE) -
backgroundColor,borderColor,borderRadius- Visual styling -
style- CSS styles as a named list -
header- Header format (use FALSE to hide) -
enabled- Enable/disable tooltips entirely
All chart functions (viz_bar(),
viz_scatter(), viz_histogram(), etc.) support
the same tooltip parameters for consistent behavior across your
dashboard.
π¨ Icons
dashboardr uses Iconify for 200,000+ icons from 100+ icon sets.
Icon Format
Icons use the format set:icon-name:
icon = "ph:house-fill" # Phosphor Icons
icon = "mdi:chart-line" # Material Design Icons
icon = "bi:graph-up" # Bootstrap IconsPopular Icon Sets
| Set | Prefix | Style | Examples |
|---|---|---|---|
| Phosphor | ph: |
Clean, modern |
ph:chart-line, ph:users-fill,
ph:gear-fill
|
| Material Design | mdi: |
Google style |
mdi:chart-bar, mdi:account-group
|
| Bootstrap | bi: |
Bootstrap style |
bi:graph-up, bi:people-fill
|
| Font Awesome | fa: |
Classic |
fa:chart-bar, fa:users
|
Page Icons
Add icons to pages in the navbar:
create_page("Home", icon = "ph:house-fill")
create_page("Analysis", icon = "ph:chart-bar-fill")
create_page("Settings", icon = "ph:gear-fill", navbar_align = "right")Tabgroup Icons
Add icons to tab labels using Quarto shortcodes:
viz <- create_content(type = "bar") %>%
add_viz(x_var = "age", tabgroup = "demographics") %>%
add_viz(x_var = "income", tabgroup = "financial") %>%
set_tabgroup_labels(
demographics = "{{< iconify ph:users-fill >}} Demographics",
financial = "{{< iconify ph:currency-dollar >}} Financial"
)Icons in Text
Use Quarto shortcodes in markdown text:
add_text(
"## Features {{< iconify ph:sparkle-fill >}}",
"",
"- {{< iconify ph:check-circle-fill >}} Easy to use",
"- {{< iconify ph:lightning-fill >}} Fast performance",
"- {{< iconify ph:heart-fill >}} Beautiful design"
)Finding Icons
- Visit Iconify Icon Sets
- Search for what you need (e.g., βchartβ, βuserβ, βsettingsβ)
- Click an icon to see its name
- Use it as
set:icon-name
Common choices by purpose:
| Purpose | Recommended Icons |
|---|---|
| Home/Landing |
ph:house-fill, ph:home
|
| Charts/Analysis |
ph:chart-line, ph:chart-bar-fill,
ph:graph
|
| Users/Demographics |
ph:users-fill, ph:user-circle
|
| Settings/Config |
ph:gear-fill, ph:sliders
|
| Info/About |
ph:info-fill, ph:question
|
| Download/Export |
ph:download-simple, ph:export
|
| Time/Trends |
ph:clock, ph:trend-up
|
Best Practice: Consistency
Pick one icon set and stick with it throughout your dashboard:
# Good: All Phosphor icons
create_page("Home", icon = "ph:house-fill")
create_page("Analysis", icon = "ph:chart-line")
create_page("About", icon = "ph:info-fill")
# Avoid: Mixed icon sets (inconsistent visual style)
create_page("Home", icon = "ph:house-fill")
create_page("Analysis", icon = "bi:graph-up") # Different set
create_page("About", icon = "mdi:information") # Another setπ§ Navbar Customization
The navbar is the main navigation bar at the top of your dashboard. You can customize it extensively to add dropdown menus, external links, and control how pages are arranged.
Dropdown Menus
Dropdown menus let you organize related links or pages under a single menu item. This is useful when you have many pages or want to include quick links to downloads, documentation, or related resources.
Use navbar_left to place menus on the left side of the
navbar, or navbar_right for the right side. Each menu item
is a list with:
-
text: The label shown in the navbar -
menu: A list of sub-items, each withtextandhref -
"---": Creates a visual divider between menu items
create_dashboard(
title = "My Dashboard",
output_dir = "output",
navbar_left = list(
list(
text = "Analysis",
menu = list(
list(text = "Demographics", href = "demographics.html"),
list(text = "Trends", href = "trends.html"),
list(text = "---"), # Divider
list(text = "Download Data", href = "data.csv")
)
)
)
)External Links
Add links to external resources like GitHub repositories, documentation sites, or data sources. These appear as clickable items in the navbar and open in a new tab when clicked.
Each link can include:
-
text: The visible label -
href: The URL (can be internal.htmlpages or externalhttps://URLs) -
icon: An optional Iconify icon code (see the Icons section for available icons)
create_dashboard(
title = "My Dashboard",
output_dir = "output",
navbar_right = list(
list(text = "GitHub", href = "https://github.com/org/repo", icon = "ph:github-logo"),
list(text = "Documentation", href = "https://docs.example.com")
)
)Sidebar Navigation
For dashboards with many pages (10+), consider using sidebar navigation instead of the top navbar. The sidebar provides more vertical space for page links and can include hierarchical organization.
Available sidebar options:
| Parameter | Description |
|---|---|
sidebar = TRUE |
Enable sidebar navigation |
sidebar_title |
Title shown at the top of the sidebar |
sidebar_style |
"floating" (overlays content) or "docked"
(pushes content) |
create_dashboard(
title = "My Dashboard",
output_dir = "output",
sidebar = TRUE,
sidebar_title = "Navigation",
sidebar_style = "floating" # or "docked"
)Tip: Sidebar navigation works especially well on mobile devices where horizontal navbar space is limited.
Page Alignment
By default, all pages appear on the left side of the navbar. You can
move specific pages to the right side using
navbar_align = "right". This is a common pattern for
utility pages like βAboutβ, βSettingsβ, or βHelpβ that users access less
frequently.
home <- create_page("Home", icon = "ph:house-fill")
analysis <- create_page("Analysis", icon = "ph:chart-bar-fill")
about <- create_page("About", icon = "ph:info-fill", navbar_align = "right")
settings <- create_page("Settings", icon = "ph:gear-fill", navbar_align = "right")
create_dashboard(title = "My Dashboard") %>%
add_pages(home, analysis, about, settings)The resulting navbar will show: Home | Analysis on the
left, and About | Settings on the right.
π¨ Tab Styling
Customize the appearance of tabs within your pages using
tabset_theme and tabset_colors. Tab styling
affects how tabbed content (created via tabgroup) appears
to users.
Available Themes
Four built-in themes provide different visual styles for your tabs. Each theme changes the shape, spacing, and general appearance of the tab buttons.
| Theme | Description | Best For |
|---|---|---|
"default" |
Standard Quarto tabs with underline indicator | General use, compatibility |
"modern" |
Clean look with subtle backgrounds | Professional dashboards |
"pills" |
Rounded pill-shaped buttons | Friendly, approachable interfaces |
"minimal" |
Subtle text-only with hover effects | Content-focused designs |
# Modern theme
modern_page <- create_page("Modern", data = gss, type = "bar", tabset_theme = "modern") %>%
add_viz(x_var = "degree", title = "Education", tabgroup = "A") %>%
add_viz(x_var = "race", title = "Race", tabgroup = "B")
print(modern_page)
#> -- Page: Modern βββββββββββββββββββββββββββββββββββββββββββββββββ
#> β data: 2997 rows x 8 cols | default: bar
#> 2 items
#>
#> β― [Tab] A (1 viz)
#> β’ [Viz] Education (bar) x=degree
#> β― [Tab] B (1 viz)
#> β’ [Viz] Race (bar) x=raceNote: Tab themes are fully rendered in the generated dashboard. Use
generate_dashboard(render = TRUE)to see the complete styling.
Custom Colors
Beyond the built-in themes, you can fully customize tab colors to
match your brand or create unique visual designs. Use
tabset_colors to define a custom color scheme.
The tabset_colors parameter accepts a named list with
the following color options:
| Parameter | Description | Default |
|---|---|---|
active_bg |
Background color of the selected tab | Theme-dependent |
active_text |
Text color of the selected tab | Theme-dependent |
inactive_bg |
Background color of unselected tabs | Transparent |
inactive_text |
Text color of unselected tabs | Gray |
hover_bg |
Background color when hovering | Light gray |
All colors can be specified as hex codes (e.g.,
"#3498DB"), RGB values (e.g.,
"rgb(52, 152, 219)"), or named colors (e.g.,
"steelblue").
# Blue theme
blue_tabs <- create_page(
"Blue Theme",
data = gss,
type = "bar",
tabset_theme = "pills",
tabset_colors = list(
active_bg = "#3498DB", # Active tab background
active_text = "#FFFFFF", # Active tab text
inactive_bg = "#ECF0F1", # Inactive tab background
inactive_text = "#7F8C8D", # Inactive tab text
hover_bg = "#BDC3C7" # Hover background
)
) %>%
add_viz(x_var = "degree", title = "Education", tabgroup = "demo") %>%
add_viz(x_var = "happy", title = "Happiness", tabgroup = "attitudes")
print(blue_tabs)
#> -- Page: Blue Theme βββββββββββββββββββββββββββββββββββββββββββββ
#> β data: 2997 rows x 8 cols | default: bar
#> 2 items
#>
#> β― [Tab] demo (1 viz)
#> β’ [Viz] Education (bar) x=degree
#> β― [Tab] attitudes (1 viz)
#> β’ [Viz] Happiness (bar) x=happyNote: Custom tab colors (like
tabset_colors) are only visible in the generated dashboard, not inpreview().
Example: Corporate Theme
Match your organizationβs brand colors for a cohesive, professional
look. Start with your primary brand color for active_bg,
then derive the other colors from it (lighter versions for
inactive_bg and hover_bg):
# Corporate red theme
corporate <- create_page(
"Corporate",
data = gss,
type = "bar",
tabset_theme = "modern",
tabset_colors = list(
active_bg = "#C0392B", # Brand red
active_text = "#FFFFFF",
inactive_bg = "#FADBD8", # Light red
inactive_text = "#922B21",
hover_bg = "#E6B0AA"
)
) %>%
add_viz(x_var = "degree", title = "Education", tabgroup = "Q1") %>%
add_viz(x_var = "race", title = "Demographics", tabgroup = "Q2") %>%
add_viz(x_var = "happy", title = "Satisfaction", tabgroup = "Q3")
print(corporate)
#> -- Page: Corporate ββββββββββββββββββββββββββββββββββββββββββββββ
#> β data: 2997 rows x 8 cols | default: bar
#> 3 items
#>
#> β― [Tab] Q1 (1 viz)
#> β’ [Viz] Education (bar) x=degree
#> β― [Tab] Q2 (1 viz)
#> β’ [Viz] Demographics (bar) x=race
#> β― [Tab] Q3 (1 viz)
#> β’ [Viz] Satisfaction (bar) x=happyExample: Dark Theme
For dashboards with dark backgrounds, use high-contrast colors to
ensure readability. The pills theme works particularly well
with dark designs because the rounded buttons create clear visual
boundaries:
# Dark theme
dark_tabs <- create_page(
"Dark Theme",
data = gss,
type = "bar",
tabset_theme = "pills",
tabset_colors = list(
active_bg = "#2ECC71", # Bright green accent
active_text = "#1A1A1A",
inactive_bg = "#2C3E50", # Dark background
inactive_text = "#95A5A6", # Muted text
hover_bg = "#34495E"
)
) %>%
add_viz(x_var = "degree", title = "Education", tabgroup = "Data") %>%
add_viz(x_var = "happy", title = "Results", tabgroup = "Analysis")
print(dark_tabs)
#> -- Page: Dark Theme βββββββββββββββββββββββββββββββββββββββββββββ
#> β data: 2997 rows x 8 cols | default: bar
#> 2 items
#>
#> β― [Tab] Data (1 viz)
#> β’ [Viz] Education (bar) x=degree
#> β― [Tab] Analysis (1 viz)
#> β’ [Viz] Results (bar) x=happyNote: Tab styling (custom colors, themes) is fully visible only in the generated dashboard. The
preview()function shows a simplified version without custom tab colors.
β‘ Lazy Loading
Warning: Lazy loading is currently experimental and may not work reliably in all browsers or configurations. Use with caution in production dashboards.
Lazy loading is a performance optimization technique that defers rendering charts and tab content until theyβre actually needed. Instead of loading everything when the page opens, content loads as the user scrolls to it or clicks on a tab. This can significantly improve initial page load times for dashboards with many visualizations.
When to Use Lazy Loading
Consider lazy loading if your dashboard has:
- Many visualizations (20+) that slow down initial page load
- Multiple tabs where users typically only view a few
- Heavy charts like maps or complex scatter plots
Enable Lazy Loading
| Parameter | Description | Default |
|---|---|---|
lazy_load_charts |
Load charts only when scrolled into view | FALSE |
lazy_load_margin |
Distance from viewport to start loading (CSS units) | "200px" |
lazy_load_tabs |
Load tab content only when tab is clicked | FALSE |
create_page(
"Large Analysis",
data = data,
lazy_load_charts = TRUE, # Load charts as user scrolls
lazy_load_margin = "300px", # Start loading 300px before visible
lazy_load_tabs = TRUE # Load tab content when clicked
)Loading Overlays
Loading overlays provide visual feedback while content renders. They display a spinner or animation that disappears once the page is ready, creating a polished user experience.
See it in action: Check out the Loading Overlay Demo to experience loading overlays - reload to see the effect.
| Parameter | Description | Options |
|---|---|---|
overlay |
Enable loading overlay |
TRUE / FALSE
|
overlay_theme |
Visual style of the overlay |
"light", "dark", "glass",
"accent"
|
overlay_text |
Custom message to display | Any string |
overlay_duration |
Minimum display time (milliseconds) | e.g., 1500
|
create_page(
"Analysis",
data = large_dataset,
overlay = TRUE,
overlay_theme = "glass", # Frosted glass effect
overlay_text = "Loading analysis...",
overlay_duration = 1500 # Show for at least 1.5 seconds
)π·οΈ Powered by dashboardr Branding
Add a subtle βPowered by dashboardrβ badge to your dashboard footer. This is entirely optional but helps spread the word about dashboardr!
dashboard <- create_dashboard("my_project", "My Dashboard") %>%
add_pages(home, analysis, about) %>%
add_powered_by_dashboardr()Style Options
Choose a style that fits your dashboardβs aesthetic:
| Style | Description |
|---|---|
"default" |
Subtle text with the dashboardr logo |
"minimal" |
Just text, no logo - most unobtrusive |
"badge" |
Rounded background badge - more visible |
# Default - subtle text with logo
dashboard %>% add_powered_by_dashboardr(style = "default")
# Minimal - just text, no logo
dashboard %>% add_powered_by_dashboardr(style = "minimal")
# Badge - rounded background badge
dashboard %>% add_powered_by_dashboardr(style = "badge")Size Options
Control how prominent the branding appears:
# Small (default) - unobtrusive
dashboard %>% add_powered_by_dashboardr(size = "small")
# Medium - more visible
dashboard %>% add_powered_by_dashboardr(size = "medium")
# Large - prominent
dashboard %>% add_powered_by_dashboardr(size = "large")Combining with Custom Footer
The branding automatically positions to the right side of the footer, leaving room for your own text on the left:
create_dashboard(
"my_project",
title = "My Dashboard",
page_footer = "Β© 2025 My Organization"
) %>%
add_powered_by_dashboardr()
# Result: Your text on left, dashboardr badge on rightRelated Vignettes
-
vignette("getting-started")- Quick overview -
vignette("content-collections")- Content collections deep dive -
vignette("pages")- Pages deep dive -
vignette("dashboards")- Dashboard creation